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The control program for a Buerger-Supper equi-inclination diffractometer on-line to a PDP-8/S 
computer is described. The computer calculates the angular settings, scan-range and optimum scan- 
speed for each reflexion, pulses stepping motors to provide the crystal and counter motions, inserts 
attenuators or balanced filters, and activates and interrogates the scaler which is part of the standard 
counting circuitry. A careful choice of counter apertures, and the re-measurement of reflexions whose 
precision or background imbalance fails to meet pre-set criteria, appear to overcome the major system- 
atic errors to which diffractometer data recorded in the equi-inclination co-scan mode are subject. 

The Buerger single-crystal equi-inclination diffractom- 
eter (Buerger, 1960a) has been commercially available 
for some years in the form of the Supper-Pace Automa- 
tic Diffractometer,§ incorporating standard counting 
circuits and a small fixed-logic computer. The replace- 
ment of this fixed-logic computer by a PDP-8/S digital 
computer with appropriate low-level interfacesll pro- 
duces a relatively low-cost installation of surprising 
versatility (Fig. 1).¶ 

Instrumentation 

The variables /z and v (equi-inclination angles), Y 
(counter setting) and ~0 (crystal setting) for this type of 
diffractometer have been defined by Buerger (1960b, c). 
The values o f / t  and v are adjusted manually for each 
reciprocal-lattice layer. Within a layer, the counter and 
crystal are moved to their respective settings, Y and ~0, 
for each reflexion by two Digitork stepping motors** 
operating under computer control. 

The counting chain consists of standard Philips 
electronic components (scintillation counter, pulse- 

* Present address: Department of Biology, Univelsity of 
Virginia, Charlottesville, Va. 22903, U.S.A. 

t Professional Services Division, Philips Electrical Pty. Ltd., 
69 Clarence Street, Sydney, N.S.W. 2000. 

~. Digital Equipment Australia Pty. Ltd., 75 Alexander 
Street, Crows Nest, N.S.W. 2065. 

§ Charles Supper Co., Natick, Mass. 01760, U.S.A. 
I[ Digital Equipment Corp., 146 Main Street, Maynard, 

Mass. 01754, U.S.A. 
¶ A detailed User Manual and an expanded version of this 

paper are available. 
** Model No. M218TW, Motion Control Systems Division, 

Warner Ele~.tric Brake & Clutch Co., Beloit, Wis. 53511, U.S.A. 

height analyser, scaler, rate-meter, printer- and punch- 
control units). Counts are initiated by impulses from 
the computer to the scaler and are timed by an electro- 
nic clock in the computer. 

Some physical constants of the equipment are as 
follows: X-ray source-to-crystal distance, 14.5 cm; 
crystal-to-counter distance, 7.5 cm; 0 </z, v < 55 o; the 
lower limit of 11" is - 10 ° and the upper limit is given 
empirically by Y'_< 73 + 6511 - (/z/55)2] 1/2. The motors 
are geared to give a resolution of 0.01 degree per step 
on the Y and ~0 scales. The maximum slewing speed of 
both motors, operating singly or simultaneously under 
computer control, is 3 deg.sec -1. The PDP-8/S com- 
puter has a memory of 4K twelve-bit words, a cycle 
time of 8/zsec and an addition-time of 36/zsee. 

Input to the system is from the keyboard or tape- 
reader of an ASR-33 Teletype unit, and output is via 
the same unit both in printed and punched-tape form. 
There are provisions for the programmed insertion of 
balanced filters, attenuators or a fast-acting shutter, 
for the manual operation of one or both motors, and 
for the mechanical interruption of power to the Y-mo- 
tor in the event of the counter colliding with any part 
of the equipment. 

The control program 

The program (which was written almost entirely by 
J. M. G. and C. E. N.) consists of a number of routines 
which perform the following functions: Input (cell 
parameters, constants for scan-range calculation and 
control parameters); calculation and listing of crystal 
and counter settings for a single reflexion or for a 
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group of reflexions; movement of the crystal and 
counter motors; measurement cycle for a single re- 
fexion; and data collection for all the reflexions in a 
given range of indices or diffraction angles. Pro- 
grammed stops are provided so that the operator can 
call for a particular routine at any time by setting one 
of the switches of the Switch Register on the computer 
console. Instructions or data are inserted by calling 
the appropriate routine in this way. The user may 
select a reflexion which is remeasured at regular inter- 
vals during automatic data collection. Excessive 
changes or drifts in the value of the standard reflexion 
cause the program to halt. 

Description of one measurement cycle 

In the automatic data collection mode the program 
goes through the following sequence: 

(1) The indices hkl are generated. 
(2) The counter and crystal settings Y and ~ are 

calculated. 
(3) The scan-range A~0 is calculated. 
(4) The scan-speed is set equal to a selected value ~ .~ .  
(5) The counter and crystal are moved to the settings 

Y and (~0-½A~0), respectively. 
(6) A fast measurement of the reflexion is then made 

and the results are stored in the computer memory: 
(i) First background count B1 for a time t/2. 

(ii) Integrated peak count P with the crystal moving 
through the angle A@ at a constant scan-speed 
during a time t = A~p/(scan-speed). 

(iii) Second background count B2 for a time t/2. 
(7) If the peak count in 6(ii) exceeds a value speci- 

fied by the experimenter, an attenuator is inserted in 
the X-ray beam and steps (5) and (6) are repeated. 

(8) If the difference between the two background 
counts exceeds a pre-set limit, the scan-range is in- 
cremented and steps (5)-(7) are repeated. 

(9) The program uses the stored peak and back- 
ground counts to compute the integrated intensity I 
and its statistical standard deviation a(I). If a(I)/I lies 
within pre-set limits, the program proceeds with step 
(11). Otherwise a new scan-speed ~0' is computed, such 
that remeasurement of the reflexion at this speed will 

' IW lead to the desired precision. Obviously ~0'< ~0m~. If (p' 
is less than a pre-set minimum ~0m~ then ~0' is set equal 
to ~0~t~. 

(10) Steps (5) and (6) are repeated with a new scan- 
speed @'. 

(11) The counts from the slowest measuring cycle 
(or from the fast cycle if the slow cycle was not carried 
out) are punched on paper-tape and listed. 

Some details of the expressions used in the calcula- 
tions are presented below. 

Calculation of the scan range 

In diffractometry by the co-scan (stationary-counter 
rotating-crystal) method, errors in the integrated inten- 

sities can arise from a failure to include the contribu- 
tion of Laue streaks to the background measurements. 
Burbank (1964) and Alexander & Smith (1964) have 
shown that these errors can be reduced, if not elimin- 
ated, by the combination of a correctly calculated 
scan-range and a correct choice of counter aperture. 
We can confirm this from our experience with more 
than a dozen complete sets of data, recorded in each 
case about two different axes for two different crystals 
of a single compound. A relative scale-factor can be 
calculated for each layer by the least-squares method 
of Rae (1965). Data recorded with a single counter 
aperture or a constant scan-range, or both, show syste- 
matic variations of the relative layer scale factors with 
the equi-inclination angle p. Such trends are absent 
from data recorded with a carefully chosen counter 
aperture for each layer and with a calculated scan- 
range for each reflexion. These two experimental 
variables therefore seem to be major sources of the 
types of systematic errors to which data recorded on 
equi-inclination instruments are prone (see, e.g. Math- 
ieson, 1969). 

In the Buerger-Supper instrument, the counter aper- 
ture can be controlled by inserting metal slides with 
circular holes of various diameters in a series of slots 
in a block mounted on the counter arm. The usual 
working range of apertures subtend angles from 3 ° 
to 5 ° at the crystal, the correct choice being the 
smallest aperture which allows the most extended re- 
flexion in a layer to be recorded without being trun- 
cated. 
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Fig. 1. Diagrammatic representation of the Supper-Buerger 
diffractometer, PDP-8/S computer and counting circuits. 
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The scan-range is calculated from the expression 

A (/) -= qLI -I- ~ D + q) M nt- (/) E 

where cp,~ is due to wave-length dispersion, ~0z) is due to 
the divergence of the X-ray beam, ~0i is due to the 
mosaicity of the crystal, and q)E is a term to allow for 
possible errors in the crystal settings. The contribu- 
tions to Aq~ are given by equations (1) to (4), in which 
~m is the mean wave-length of the incident radiation, 
/t is the equi-inclination angle (Buerger, 1960b, c), 
A2 is the wave-length dispersion, 
S is the angle subtended at the crystal by the source, 
C is the angle subtended at the source by the crystal, 
X is the effective angular X-ray beam divergence, 

X = S + C ,  
p is the estimated fractional error in the reciprocal 

parameters ~" and ~, which are defined by Buerger 
(1960c), 

(6/0 is the estimated error in p, in degrees. 

rp~ = ~ t a n ~ -  ( l+ tan2/ t )  (1) 

X Y 
rp/) = --cos/t + X sin/~ cot -2- (2) 

~OM = constant (assumed), (3) 

( 18-0-]p tan -~-(1Y ) 6/~)~ (0E=2 \ zc ,, + t a n 2 p - + 2 ( - - - g  (4) o 

For A2 in equation (1), values equal to the separation 
of the Koq-Koc2 doublet, plus from 3 to 10 times the 
sum of the widths of Kcq and K~2 lines at half peak 
intensity, have been proposed (Burbank, 1964; Alex- 
ander & Smith, 1964). The second term in (2) is derived 
from an expression given by Phillips (1954) for the 
angular range over which a crystal reflects in an upper- 
level equi-inclination setting. The first term in equa- 
tion (4) is derived with some approximation by dif- 
ferentiating the expression for ~o in the equi-inclination 
case (International Tables for X-ray Crystallography, 
1959). The fractional errors, p, in ( and ~ are assumed 
to be equal and independent of p. The second term in 
(4) is due to Sayre (1954). 

For a zero-level reflexion, 

A2 
A~0= 2~-tan O+S+C+~oM+q)E 

which differs from the expression derived by Burbank 
(1964) only by the addition of ~0E. 

The constants X and ~0M can be determined approx- 
imately by measuring the widths of low-angle reflexions 
on zero and upper layers, respectively. (Typical values 
for the constants used in data collection are: A2-- 
0"005-0"009 A, X=0.6 °, (0M=0"3 °, p=0"001, (fi/Z)= 
0 . 0 5  °.) 

Background imbalance test 

After the fast measurement cycle, the program tests 
whether 

IB~ - Bel < cB(BI + BE) 1/2 + c~(P- B1 - BE). 

The constants CB and ci are supplied by the user. In 
our experience, CB=6 and ci=0"01 have been used 
successfully. If the inequality is satisfied, the measure- 
ment cycle is continued; if not, the scan-range is in- 
cremented. Where a crystal has been accurately aligned, 
the unit-cell dimensions have been precisely determined 
and appropriate scan-range parameters have been 
chosen, the failure of the imbalance test will generally 
imply that some instrumental malfunction has oc- 
curred. 

Calculation of the scan speed 

Having stored the integrated peak count, P, and the 
sum of the two background counts, B, measured at the 

, 

fast scan-rate q~mx, the program computes a new scan- 
rate q~' where 

• , rR, V fP-B/  
(P = q~max~[-3OJ~ [ P + B /  " (5) 

In this equation Re is the expectation value of the con- 
ventional percentage residual R. The above expression 
for ¢0' is based on the design for a 'constant agreement 
analysis' diffractometer experiment (Killean, 1967). 
The value of Re is specified by the user. The upper and 
lower limits of rp' are ~0max and ~0mi, respectively. If 
~0" < ~0~,in, it is reset to the value rp~in. On the other hand, 
a sufficiently large value of Re causes the calculated 
value of ~0" to be always greater than q)m~x. In this case 
¢o' is ignored, and all reflexions are measured only once 
at the constant scan-speed ~0~,ax. 

For a given crystal, the proportion of reflexions 
which will be recorded as 'unobservably weak' de- 
pends mainly on the value which is chosen for ~0~,i,. 
The value of ~0~i . also affects the rate of data-collection 
more than do the values of (;~,ax and Re. (Typical values 
which have been used in this laboratory are" ¢ ~ =  

t 

0"25-0"33 deg.sec-1; rPmin=0"02--0'05 deg.sec-1; Re= 
2-5%.) 

Averaged over full three-dimensional sets of data, 
the rate of measurement has been found to vary from 
a minimum of 15 to a maximum of 50 reflexions per 
hour. 

Programming details 

The control program is written in the symbolic lan- 
guage PAL III (Digital Equipment Corp., 1967), punched 
on cards, and assembled on a CDC 3600 computer 
using a modified version of the program PALFTN 
(Busing, 1965). The resulting 8-channel binary paper 
tapes are read directly into the PDP-8/S computer. 
For arithmetic and input-output we have used PDP-8/ 
S library subroutines with modifications similar to 
those made by Busing, Ellison, Levy, King & Rose- 
berry (1968). The program occupies almost all of the 
4K 12-bit word store. 

This work was supported by the National Institute 
of General Medical Sciences, U.S. Public Health Ser- 
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In the B JR theory of electron diffraction an absorption effect due to weak beams is introduced into the 
two-beam approximation for the dynamical diffraction of electrons by thick crystals. This is shown to be 
unjustified for diffraction from perfect crystals. The use of the theory to derive the temperature dependence 
of diffraction intensities must therefore be modified. 

The B JR theory of electron diffraction (Boersch, Jeschke 
& Raith, 1964) has been used successfully as the basis for 
interpretation of intensity measurements in electron dif- 
fraction, particularly in relation to the temperature varia- 
tion of relative intensities of rings from thick polycrystalline 
specimens (Glaeser & Niedrig, 1966; Albrecht & Niedrig, 
1967, 1968). However, the basic assumptions of the theory 
have been brought into question (for example by Fukuhara, 
1965) chiefly because of the introduction of an absorption 
effect due to weak beams in the two-beam approximation to 
the dynamical theory of electron diffraction. Starting from 
a slice-type formulation of scattering theory, the scattering 
from an individual layer of atoms is regarded as the scat- 
tering by a phase grating which can be expressed in terms 
of complex atomic scattering factors. This is somewhat 
similar in principle to the assumptions of the theory of Cow- 
ley & Moodie (1957) which has been quoted in this connex- 
ion. Hence we feel it is appropriate to discuss the dif- 
ferences between the Cowley-Moodie and the B JR theories 
and to point out the nature of the deficiency in the latter. 

In the approach of Cowley & Moodie (1957) the trans- 
mission of an electron wave through a thin slice of crystal 
is treated in terms of a modification of the phase of an 
electron wave by a two-dimensional projected potential 
distribution, acting as a planar phase-grating, plus the modi- 
fication of the phase due to Fresnel diffraction between 
slices. It has been shown (Moodie, 1968) that, in the limit- 
ing case of the slice thickness tending to zero, this gives a 
solution to the scattering problem which is exactly equiva- 
lent to a solution of the Schr6dinger wave equation. In the 
absence of absorption due to inelastic scattering or elastic 
diffuse scattering by crystal imperfections, the periodic 
potential distribution inserted into the Cowley-Moodie 
formulation and into the wave equation is a real one. 

For purposes of the calculation of intensities, the Cow- 
ley-Moodie formulation has been used with finite slices. In 
the case of a slice thickness corresponding to a single layer 
of atoms, which gives no appreciable error in calculated 
intensities, the scattering by the slice could be written ap- 
proximately in terms of the complex atomic scattering 
amplitudes deduced by partial wave scattering theory by 
Ibers & Hoerni (1954) or Raith (1968), but this constitutes 
only a convenient mathematical device for representing the 
scattering from a real potential. In such scattering by a pure 
phase grating, energy is conserved and no absorption is 
involved. 

In the B JR approach however, when the scattering by a 
single layer of atoms is expressed in terms of complex scat- 
tering amplitudes, manipulation of the expressions appears 
to lead to the introduction of an absorption effect which is 
mathematically equivalent to the use of a complex potential 
in the wave iequation. This complex potential is formed 
by summing over complex atomic scattering amplitudes in 
the same way as the real potential is obtained by summing 
over the real, first Born approximation, scattering amplitudes 
which are used because they are proportional to the struc- 
tm'e amplitudes obtained by Fourier inversion of the real 
atomic potential distributions. The origin of the absorption 
is said to be the effect of weak beams on the two strong 
beams considered in a two-beam approximation, since for 
each single-atom layer some intensity will be scattered into 
the weak beams. The error in this treatment arises from 
the fact that, while scattering from strong beams into weak 
beams is taken into account, the scattering from weak 
beams into strong beams is not. 

Complete n-beam calculations, such as those of Good- 
man (1968), have clearly demonstrated that, for thickness 
greater than about one or two 'extinction distances' of the 


